

Selection of biofuels and biomasses

Grant Agreement N°	691	763	Acronym	BIOMAS	SUD PLUS
Full Title	Developing the sustainable market of residential Mediterranean solid biofuels.				
Work Package (WP)	5				
Authors	J. Carrasco (CIEMAT); Luis S. Esteban (CIEMAT); Miguel Fernández (CIEMAT)				
Document Type	Deliverable 5.1				
Document Title	Selection of BIOMASUD biofuels for combustion tests				
	со	Confidential, only for members of the Consortium (including the Commission Services)			
	PU	Public		Х	
	PP	Restricted to other programme participants (including the Commission Services)			
	RE	Restricted to a group specified by the Consortium (including the Commission Services)			

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 691763

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other participant in the BIOMASUD PLUS consortium make no warranty of any kind with regard to this material including, but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the BIOMASUD PLUS Consortium nor any of its members, their officers, employees or agents shall be responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the BIOMASUD PLUS Consortium nor any of its members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage caused by or arising from any information advice or inaccuracy or omission herein.

CONTENTS

1.	INTRODUCTION	4
2.	SELECTED BIOFUELS	4
3.	ANNEX I. Typical characteristics of the selected biomasses	6

1. INTRODUCTION

In Task 5.1 selection of Mediterranean biofuels for testing in different domestic biomass combustion devices in Task 5.3 is foreseen. In the project work programme it is stated a total of two widely commercialized or with high potential interest domestic new biofuels (excluding conventional woody ones) produced out of Mediterranean biomasses will be identified and selected for combustion tests in task 5.3. In addition, olive stones are preselected in view of its already recognized high potential as fuel for residential heating in most of the Mediterranean countries as well as its wide use as domestic fuel in some of those countries.

The selection of the biofuels is made by CIEMAT in collaboration to BIOS, CERTH, CBE, taking into account the results of the national market studies of WP2.

In this report the results achieved in that selection and justification are described.

2. SELECTED BIOFUELS

The solid biofuels selected for combustion tests in Task 5.3 are:

- Olive stones (preselected in the Project DoW)
- Pellets made of olive tree branches (olive prunings)
- Pellets made of vine branches (vineyard prunings)

The reason for selecting both types of biomass prunings is that according to selection criteria in the work programme, although they are not very significantly commercialized for domestic use at present, as it is the case of olive stones, their potential production in the Mediterranean area is high. According to preliminary results in WP2 (see Table 1), the potential of the new selected biomasses individually is several times higher than other typical Mediterranean biomasses like the different classes of nut shells (see also D3.1). Moreover, in Task 3.1 all participant Mediterranean countries in the Project have identified those two biomasses as the one of national feedstocks of larger potential and interest to be upgraded into biofuels for further commercialization (see national reports in annex of D3.1).

According to preliminary results in WP2, the potential of olive tree prunings and vineyard prunings in the Mediterranean participant countries is shown in Table 1.

Table 1. Annual potential of vineyard prunings and olive tree prunings in the participant countries (based on Eurostat, 2014).

COUNTRY	VINEYARD PRUNINGS (t DM/y)	OLIVE TREE PRUNINGS (t DM/y)	
Croatia	41.262	4.420	
Greece	520.156	1.178.489	
Italy	2.079.240	981.835	
Portugal	245.664	227.685	
Slovenia	28.284	405	
Spain	1.866.498	2.288.895	
Turkey	1.252.500	884.000	
TOTAL	6.033.604	5.565.729	

Moreover, for combustion testing in Task 5.3 it has been decided to use both selected biomasses as pellets given the limited scope of the project (only two biofuels in addition to olive stones will be tested in one stove and one boiler per relevant partner) and the fact that pellets is a widely used biofuel in the domestic sector. Moreover, as identified in D5.2, some manufacturers of stoves and small boilers (<120kWth) offer equipments suitable for both, olive stones and pellets, but not for other biofuels, like chips, which should not allow to test all the selected biofuels in stoves and in a single small boiler.

The CIEMAT will produce pellets of both types of prunings for combustion tests in task 5.3, meeting, as far as possible, the ISO 17225-2:2014. To achieve this, appropriate biomass pretreatment and densification conditions will be utilized.

Table in the Annex, shows typical analytical values of the three selected biomasses. The characteristics of olive stones are given by the quality parameters and limits defined in UNE 164002:2014, quality class A2.

3. ANNEX I. Typical characteristics of the selected biomasses.

Property class /Analysis method		Unit	Olive stones class A2 ^a	Olive tree pruning	Vineyard pruning
Dowiele	Fines, F < 1 mm	w-% as received	<1	Not Applicable	Not Applicable
Particle size, EN 15149-1	Fines, F < 2 mm	w-% as received	< 15	Not Applicable	Not Applicable
	Nominal top size ^b	w-% as received	< 8	Not Applicable	Not Applicable
Skin content,	ISO 659	w-% as received	<u><</u> 2,0	Not Applicable	Not Applicable
Oil content, IS	SO 659	w-% dry	<u><</u> 1,0	Not Applicable	Not Applicable
Moisture, M, EN 14774-2	EN 14774-1,	as received, w-% wet basis	M12 <u><</u> 12	9,2	14,6
Ash, A, EN14	775	w-% dry	A1.0 <u><</u> 1,0	4,7	3,6
Net calorific v 14918	alue, Q, EN	as received, MJ/kg or kWh/kg	Q15.7 <u>></u> 15,7 o Q4.4 <u>></u> 4,4	16,08	16,24
Bulk density, 15103	BD, EN	kg/m ³	BD650 <u>></u> 650	Not Applicable	Not Applicable
Nitrogen, N, E	EN 15104	w-% dry	N0.4 ≤ 0,4	0,71	0,67
Sulphur , S, E	N 15289	w-% dry	S0.04 < 0,04	0,06	0,06
Chlorine, CI,	EN 15289	w-% dry	CI0.04 < 0,04	<0,01	<0,01
Arsenic, As, E	EN 15297	mg/kg dry	<u><</u> 0,5	0,18	0,77
Cadmium, Co	l, EN 15297	mg/kg dry	<u><</u> 1,0	<0,10	<0,10
Chromium, C	r, EN 15297	mg/kg dry	<u><</u> 10	1,1	1,4
Copper, Cu, I	EN 15297	mg/kg dry	<u><</u> 15	15	3,7
Lead, Pb, EN 15297		mg/kg dry	<u><</u> 10	0,29	0,30
Mercury, Hg, EN 15297		mg/kg dry	<u><</u> 0,01	0,0098	0,002
Nickel, Ni, EN 15297		mg/kg dry	<u><</u> 15	1,2	1,2
Zinc, Zn, EN 15297		mg/kg dry	<u><</u> 20	10	15
CaO		w-% dry	22	40	31
K ₂ O		w-% dry	31	9,3	14
MgO		w-% dry	2,7	3,3	6,7
Na₂O		w-% dry	0,35	0,4	0,37
(CaO+MgO)/	(K ₂ O+Na ₂ O)		0,79	4,5	2,6

^a Olive stone can come from olive oil mills or olive oil extractors. In case it comes from oil extractors, it may have suffered a chemical treatment with hexane or other solvents, which are subsequently recovered, for the extraction process of the residual oil. This extraction process and the solvents used must be stated. Olive stones treated with chemical additives, such as salt or soda, are excluded from this standard.

 $^{^{\}rm b}$ 100 w-% must pass through the round hole sieve size of 16 mm.